Regularity of Weak Solutions to the Monge–ampère Equation
نویسنده
چکیده
We study the properties of generalized solutions to the Monge– Ampère equation detD2u = ν, where the Borel measure ν satisfies a condition, introduced by Jerison, that is weaker than the doubling property. When ν = f dx, this condition, which we call D , admits the possibility of f vanishing or becoming infinite. Our analysis extends the regularity theory (due to Caffarelli) available when 0 < λ ≤ f ≤ Λ < ∞, which implies that ν = f dx is doubling. The main difference between the D case and the case when f is bounded between two positive constants is the need to use a variant of the Aleksandrov maximum principle (due to Jerison) and some tools from convex geometry, in particular the Hausdorff metric.
منابع مشابه
Regularity of Subelliptic Monge-ampère Equations in the Plane
We establish a C∞ regularity result for C1,1 solutions of degenerate Monge-Ampère equation in R2, under the assumption that the trace of the Hessian is bounded from below.
متن کاملC regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two
We prove C regularity of c-convex weak Alexandrov solutions of a Monge-Ampère type equation in dimension two, assuming only a bound from above on the Monge-Ampère measure. The Monge-Ampère equation involved arises in the optimal transport problem. Our result holds true under a natural condition on the cost function, namely non-negative cost-sectional curvature, a condition introduced in [7], th...
متن کاملRegularity for Solutions of the Monge-ampère Equation
In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, is W 2,1 loc . This is obtained by showing higher integrability a-priori estimates for Du, namely Du ∈ L log L for any k ∈ N.
متن کاملBoundary regularity for the Monge-Ampère and affine maximal surface equations
In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the existence and uniqueness of globally smooth solutions to the second boundary value problem for the affine maximal surface equation and affine me...
متن کاملBoundary Regularity for Solutions to the Linearized Monge-ampère Equations
We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.
متن کامل